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J. Phys. A: Math. Gen. 15 (1982) 507-525. Printed in Great Britain 

Quantum fluid ground state of the sine-Gordon model with 
finite soliton density: exact results 

F D M Haldanet 
Institut Laue-Langevin, 156X, 38042 Grenoble, France 

Received 29 April 1981 

Abstract. The Bethe ansatz solutions of the massive Thirring model are renormalised and 
used to obtain exactly the ground-state properties of the sine-Gordon model with a finite 
density of topological solitons. Using a theory of 1D quantum fluids, the correlation 
function exponents and low-energy excitation spectrum are obtained. Expansions in 
various limits are given, and various crossovers described. 

1. Introduction 

In recent years, there has been intensive study of the sine-Gordon (SG) boson quantum 
field theory in one space dimension (‘1 + 1 dimensions’) and the equivalent fermion 
massive Thirring model (MTM) (Coleman 1975). The model is also of interest in 
connection with quasi-one-dimensional materials with commensurate and incom- 
mensurate density waves at low temperatures. The model has turned out to have a 
factorisable S-matrix (Zamolodchikov and Zamolodchikov 1979) and has recently 
been solved by the Bethe ansatz (Bergknoff and Thacker 1979). In this paper I use 
these solutions to derive the ground-state properties of the model in the quantum fluid 
state where it has a finite density of topological defects or solirons. The parameters 
describing the low-energy excitations of such a system, as well as the exponents 
controlling the power-law fall-off of ground-state correlations, are explicitly presented. 
Crossover behaviour in various limits is described. 

The two variants of the model have Lagrangian densities 

(1.1) CpG=1. Z(a,4)@”4) + ( m o m 2  cos(P4), 

2- = &ir,a” - mol$ -Mr”$)(&W --72 c g. (1.2) 

(4?r/P 2, = 1 + g/ -72 > 0. 

The relation between the two dimensionless coupling parameters P and g is 

(1.3) 

To define the model, a high-energy cut-off is required; the bare mass mo must undergo 
multiplicative renormalisation in the field-theoretical limit where this cut-off goes to 
infinity and Lorentz invariance is re-established. This limit, in which the SG and MTM 
become equivalent (Coleman 1975)’ only exists for 0 C P2 s 8?r, -&r < g. Outside this 
range, the MTM has no mass gap, even when mo is finite, and a Lorentz-invariant field 

t Address from September 1981: Department of Physics, University of Southern California, Los Angeles, 
CA 90007, USA. 

0305-4470/82/020507 + 19$02.00 @ 1982 The Institute of Physics 5 07 



508 F D M Haldane 

theory cannot be obtained when mo is non-zero. The limiting case p2  = 8.rr must be 
obtained by letting p2 + 8.rr after taking the field-theoretical limit. 

In the region 0 < p2 s 87r discussed here, the mass term is relevant. A treatment of 
the infrared divergent perturbation expansion in the mass term mo by a scaling theory 
leads to the idea of universal crossover functions describing the crossover from the 
unstable (massless) weak coupling fixed point to the stable strong coupling k e d  point, 
out of the range of convergence of the perturbation expansions. It would seem to be of 
interest to extract such crossover functions from the available exact Bethe ansatz 
solutions. Such a calculation implies an identification of the renormalised coupling with 
some physical quantity calculable within the Bethe ansatz formalism. 

The approach described here is based on a recent theory of one-dimensional 
quantum fluids (Haldane 1980, 1981a). The SG theory has a topologically conserved 
charge, the soliton number N,, corresponding to the fermion charge of the MTM. In the 
classical limit p2+ 0 of the SG, the system with a finite density of solitons has a ‘solid’ 
soliton lattice ground state, but for any finite value of the quantum parameter p2,  
zero-point fluctuations liquify this lattice, and the ground state is a 1D quantum fluid. 
Such a fluid shows critical behaviour at T = 0; its correlations decay asymptotically with 
characteristic power laws. The exponents are controlled by a single dimensionless 
parameter which will be designated by q, following Haldane (1980). In the classical 
limit, the ‘quantum jluctuation parameter’ exp(q) goes to zero. In the semiclassical 
limit, exp(q) is essentially a measure of the ratio of the amplitude of the zero-point 
fluctuations of a particle of the fluid in the ‘cage’ formed by its neighbours, compared 
with the mean interparticle separation. In the dilute soliton limit, the quantum 
fluctuation parameter exp(q) has the limiting value 1, characteristic of dilute fluid 
systems which are dominated by the ‘hard core’ interaction between particles. This 
limit is perhaps best exemplified by the gas of free spinless fermions, where the effect of 
the Pauli principle is equivalent to a hard core. On the other hand, as will be shown 
here, in the concentrated soliton limit, where the effect of the mass term in (1.2) 
becomes negligible, exp(q) tends to the limit appropriate to the corresponding massless 
Thirring model, in fact exp(2q) + p2/4.rr. In this work, the variation of this dimension- 
less ground-state parameter as a function of soliton density will be taken to be the 
principal crossover function of the SG/MTM system. Recent developments in the theory 
of 1D quantum fluids (Haldane 1980, 1981b) have finally shown how the value of this 
parameter can be extracted from Bethe ansatz solutions. 

The calculation is given in a fully renormalised form, in terms of the soliton mass m,, 
and the ‘velocity of light’ c, which characterises the Lorentz invariance of the field 
theory. A number of different length scales appear in the model: the principal one is the 
quantum soliton length R, = h/m,c. For p2 < 4 ~ ,  there are also excitonic soliton- 
antisoliton bound states, or ‘breathers’, with masses mb”’ = 2m, sin(&rKn), n < K - ~ ,  

where 

(this quantity K will be adopted as the standard parametrisation of the SG/MTM coupling 
in this work). For p2<47r, or K < 1, a second important length scale is the principal 
breather length Rb = h/mf ’c .  As will be noted here, it is this quantum breather length Rb 
that becomes the characteristic width of the classical soliton in the limit p2 + 0, K + 0. 
Connection with the Frank-van der Merwe (1949) solution for the ground-state energy 
of the classical soliton lattice will be made; this classical soliton width Rb controls the 
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crossover between the high- and low-density classical soliton lattice regimes. In 
addition, as p2+0,  it will be shown that there is a third length scale l? = 
2Rb ln[2 e x p ( C ) / r ~ ]  >> Rb which controls the crossover between the dilute quantum 
fluid and the dilute semiclassical fluid corresponding to the semiclassical extension of 
the Frank-van der Merwe classical behaviour. Similarly, the limiting model with 
p2 = 8r ,  K = 00 has qualitatively different behaviour in the high soliton density limit to 
models with finite K, and a length scale R *  = constant x R,(&K)-”~ exp( - $ K )  charac- 
terises the crossover. This crossover regime is also accessible by straightforward 
perturbation theory in the MTM mass. 

2. The soliton fluid state: general considerations 

The excitation spectrum (for fixed charge) of the SG/MTM model about a ground state 
with finite soliton density can be understood from examination of the case K = 1, 
corresponding to the free fermion limit of the MTM. The ground state is non-degenerate; 
the excitation spectrum can be described in terms of four ‘elementary’ components, and 
is schematically depicted in figure 1. ‘Type I’ excitations take a particle from the Fermi 
surface to high energies, and cover the whole range of momenta, except P = O ;  the 

...... ...... \cB ..... 

...... ...... ....... ....... ........ . . . . . . . . .  .......... A ........... 
I 

..... 

... ..... ...... ....... ........ ......... .......... ........... .......... x ........... 
IIb 

..... ...... ....... ....... . . . . . . . .  ......... .......... A ........... 
IIn 

..... ...... ....... ........ ........ ......... .......... .......... n ........... 
A J = 2  

Flgurel. Fixed-charge excitation spectrum of the soliton fluid state of the quantum 
sine-Gordon or massive Thirring model. (Left): construction of the ‘elementary’ type I, 
type IIa, type IIb and current ( A J  = 2) excitations in the free fermion limit (p2  = 4 s  or K = 1) 
of the MTM. (Right): energy against momentum diagram for the excitation spectrum; for 
p2 <47r ( K  < 1) the type IIb branch should be identified with the excitonic bound state or 
‘breather’. The energy of the elementary current excitation J = O + J =  2 is 2shu,/L; as 
p2+ 0 ( K .  + 0) U, + 0 and the ground state becomes degenerate with crystalline order. The 
type IIa and type IIb excitations become acoustical and optical phonons, while the type I 
excitations become dynamical solitons or ‘single-particle’ modes. The shaded region marks 
the continuum of the full excitation spectrum. The q = 0 collective modes are ‘missing’: 
their place is taken by excitations that change the topological charge but leave the system in 
a ground state. The quantum fluid behaviour described here involves only long-wavelength 
acoustical modes with sound velocity vs and current excitations. Together with the charge 
excitations, these fully span the space of low-energy states. 



510 F D M Haldane 

group velocity is the sound velocity at long wavelengths, but rises asymptotically to the 
light velocity at high energies. ‘Type IIa’ excitations involve excitation from an 
occupied particle state to the nearest point on the Fermi surface, and are restricted to 
the momentum range [PI < r h p , ,  P # 0. ‘Type IIb’ excitations take a particle from an 
occupied ‘negative energy’ state in the filled Dirac sea to a state at the Fermi level; these 
excitations are restricted to the momentum range IP[ > d i p , .  Finally, current excita- 
tions carrying momentum in units of 27rhp, are made by excitation of a particle from the 
highest filled state on the one side of the Fermi surface to the lowest empty state on the 
other side. This involves an energy O(l/L) (where L is the periodic boundary length) 
which is quadratic in the total current. This catalogue can be extended to include the 
‘missing’ P = 0 modes as excitations that change the total soliton charge, but leave the 
system in the appropriate ground state. The combined type I1 states have a single gap at 
P =  * d i p s ;  they can be regarded as a single set of modes. From an observation by 
Overhauser (1965), it is known that the Hilbert space can be fully spanned by the charge 
and current excitations, plus a single set of q # O  collective modes that can be 
constructed as combinations of type I and type I1 excitations. 

The excitations of the interacting system with K # 1 soluble by the Bethe ansatz have 
a similar character, and the characterisation into type I and type I1 excitations follows 
the terminology introduced by Lieb (1963) for the Bose fluid. For K < 1, the type IIb 
states may be taken to be the principal breather excitations, which are excluded from 
the range IPI < whp, by the Pauli principle. In the classical limit K -* 0, the ground state 
develops long-range crystalline order, and becomes degenerate as the energy for 
making current excitations (now Umklapp processes where the lattice absorbs momen- 
tum) vanishes. In this limit, the type IIa excitations become the acoustical phonons, 
while the type IIb excitations are the optical phonons; the existence of a single gap in the 
phonon spectrum has been noted in the studies of the classical dynamics (Gupta and 
Sutherland 1976). In this limit it is possible to regard the type I1 excitations as the 
complete set of collective modes of the system; the type I excitations are then nonlinear 
combinations of these, and are the ‘single-particle’ or ‘dynamic soliton’ excitations. 
The fact that such excitations where a single particle of the fluid is given high 
momentum persist as a localised moving entity, and do not decay into delocalised 
collective radiation, is a particular characteristic of ‘integrable’ systems. 

The above discussion has briefly described a number of interesting features of the 
excitation spectrum of the soliton fluid. However, the rest of this work will only be 
concerned with quite general quantum fluid aspects of the ground-state and low-energy 
excitation spectrum, unrelated to the presence or absence of integrability. Only the 
charge, current and long-wavelength acoustical modes are needed for this discussion. 

According to Haldane (1980, 1981a,b,c), the low-energy spectrum of a 1D 
quantum fluid (without internal degrees of freedom such as spin) can be represented as 

(-l)J = +1 (bosons), -(- l)N (fermions). (2.4) 
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Here bi ,  q L / h  integral, are collective boson modes describing long-wavelength 
density fluctuations. N is the total charge, and J is an integral quantum number 
proportional to the quantised current, j=vJ(J/L). For a given total charge, J is 
restricted to either even or odd values by the selection rule (2.4), which is the only 
reflection of the statistics of the component particles of the fluid that distinguishes the 
SG from the MTM. The elementary current excitations J + J + 2 carry a characteristic 
momentum 2hkF, perhaps more familiar in connection with Fermi systems, but quite 
general to 1D quantum fluids. In the classical limit, v J + 0 ,  and 2kF becomes the 
reciprocal lattice vector of the solid ground state. 

The Hamiltonian is characterised by three parameters with dimensions of velocity: 
vs  is the sound velocity, while vN is related to the compressibility, and vJ to an effective 
kinetic mass density. A fundamental property of 1D quantum fluids is the relation 

os= (uNt)J)1/2. (2.5) 

This has been explicitly verified for systems such as the SG/MTM that are solved by the 
Bethe ansatz (Haldane 1981b). This relation allows the 'quantum fluctuation 
parameter' exp(cp) to be defined through 

U N  = vs exp(-2cp), UJ = vs exp(2cp). (2.6) 

As independently demonstrated by calculations based on (i) the Luttinger model 
(Haldane 1980,1981a) and (ii) the 1D harmonic fluid (Haldane (1982), the form of the 
low-energy correlation functions is controlled by this parameter. The long-distance 
density4ensity correlations are the same for the SG and m. At T = 0, 

where 7 = 2 exp(2cp). This is the general form for a 1D fluid; the Am are model- 
dependent coefficients. The single-particle soliton correlations have the asymptotic 
behaviour 

m 
- m * q  (4: (x)s~(o)> ~ I ~ p s l - ~ ' ~  C B m  cos(2mkFx)IxpsI 

m=O 

The difference between the SG and MTM results is due to the selection rule (2.4); boson 
single-particle correlations only involve even harmonics of 2kF, and fermion ones odd 
harmonics. The classical limit corresponds to exp(cp) + 0; the fluid then develops 
long-range order in its periodic density correlations, and the single-particle correlations 
vanish. For free spinless fermions, 7 = 2. 

Calculation of vs  and exp(cp) suffices to establish the low-energy structure of a 1D 
quantum fluid. In fact, the Lorentz invariance of the SG/MTM system allows both these 
quantities to be related to the variation of the soliton chemical potential as a function of 
density p s  at T = 0. The ground state with finite momentum (i.e. finite current quantum 
number J, but no density wave excitations) can be obtained from the P = 0 ground state 
by a Lorentz transformation. Comparison with (2.1) allows vJ to be identified, while vN 
is obtained from the compressibility. In an open system such as that under considera- 
tion, the time-like component of the relativistic vector which has space-like component 
CP is the enthalpy, Eo+pL, where Eo is the energy and p = -aEo/dLIN is the pressure. 
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Since EO has the form Le0(N,/L), it is easily found that the enthalpy in the rest frame is 
given by p.N,, where p, is the chemical potential aEo/aN,lLfor asystem at rest. Making 
a Lorentz transformation with parameter y = cosh-’(l- v / c ~ ) - ” ~  gives 

E + @  = psNs cosh(y), cP = p,N, sinh(y). (2.9) 

(2.10) 

For small P, this leads to 
1 2 2  E(P)=Eo+?c P / p sN,+  . . . . 

Comparison with (2.1) leads to the identification 

(2.11) 

In the low soliton density limit ps+ 0, pLs+ E, = m,c2, the soliton rest energy, and 
vJ + r h p , / m , ,  a result characteristic of Galilean invariance. The quantity vN is simply 
related to the compressibility; from (2.1), 

2 
V J  = rhpsc Ips. 

vN = (rh)-‘apS/aps. (2.12) 

Combining these results, 

= ( V N ~ J ) ” ~ / C  = K P ~ / ~ ~ ) ~ ~ , / ~ P , I ’ / ~ .  (2.13) 

This is the result characteristic for a relativistic fluid. Similarly, 

exp~cp)  = ( v J / v N Y  = ~ ~ C [ ( ~ ~ / C L ~ ) ~ ~ ~ / ~ C L , I ~ ’ ~ .  (2.14) 

The quantum nature of exp(cp) is apparent. It is convenient to express hc in terms of the 
soliton rest energy E, = msc2 and quantum soliton length R, = h/m,c ; then 

(2.15) 2 112 exp~cp)  = rE,Rs(ap?/aps ) . 

3. Derivation of the Bethe ansatz equations for the soliton fluid 

In this section I will obtain the renormalised Bethe ansatz equations describing the 
properties of the ground state of the SG/MTM with finite soliton density. The renor- 
malisation of the equations describing the excitations about this ground state can be 
carried out in an analogous way, but will not be given here. 

Bergknoff and Thacker (1979) have given the MTM Bethe ansatz equations: 

(I?,);’ sinh(ai) = 2rNi /L  +L-’ @(ai -ayi), 
i 

(RJo and (E,)o = ~ C / ( R , ) ~  are the bare soliton quantum length and rest energy. In the 
zero-soliton ground state, all the ai are real, and the set of quantum numbers Ni ranges 
over all the integers. Excitation of solitons is achieved by making ‘holes’ in this 
distribution of ai ; antisoliton excitations have Im(ai) = i r ,  and ‘breather’ excitonic 
states, present for K < 1, also involve complex ai. 1 will describe only the finite soliton 
density ground state in which the ai have been removed from a range -A < LY C A. 
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In the thermodynamic limit, the distribution of real ai is described by the density 
p ( a i )  = (Rs)o/(L(ai+l -ai)). The zero soliton state density satisfies the linear integral 
equation 

which can be formally solved by a Fourier transform (Bergknoff and Thacker 1979): 
W 

2.~rpo(a)= da‘ (S (a -a ’ ) -R(a  -a’)) COSh(a‘), (3.3) I, 
z ( y )  = sinh[ay(K - 1 ) / ( ~  + l)]/sinh(ry). (3.4) 

The analogous equation in the presence of a finite soliton density is 
A W 

27rp(a) - da’ @’(a - a’)p(a’) = cosh(a) - dK’ @’(a - a‘)p(a’),  (3.5) I, 
A 

(N~IL)=P,= (R,);’ J dap(a) ,  (3.6) 

(Eo/L) = E O  = (Rs)il(Es)o( da cosh(a)p(a) - I-, da cosh(a)Ap(a)), 

-A 

A W 

(3.7) 

where EO is the ground state energy per soliton relative to the zero-soliton state, and 
Ap(a) = p ( a )  -po(a).  Subtraction of (3.2) from (3.5) gives 

-A 

A 00 

2aAp(a)- da’ @‘(a -a’)p(a’) = - da’ @‘(a -a’)Ap(a’). (3.8) I, 
By taking Fourier transforms, this is easily inverted to give 

A 

p ( a )  =po(a)+J  d a ’ R ( a  - a ’ ) p ( a ‘ ) .  
-A 

Using this, the expression (3.7) can be manipulated into the form 
A 

(3.9) 

(3.10) 

where p o ( a )  is defined by (3.3). 
The only problem in the above analysis is that the equation (3.3) for po(a) is not well 

defined because it was derived assuming that cosh(a) had a Fourier transform. The fact 
that this is not so means that some cut-off at large values of a must be imposed. 
Bergknoff and Thacker (1979) have discussed this point. The clearest way of providing 
a suitable cut-off is to derive the theory as the limit of a lattice theory, the soluble ‘XYZ’ 
spin chain of Baxter (1972). This, as pointed out by Bergknoff and Thacker, unam- 
biguously identifies the solution of (3.3) as 

po(a) =po(o) cosh[$(l + K)cY], (3.11) 

where po(0) is a divergent multiplicative renormalisation constant. 
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It is now convenient to obtain a renormalised form of the equations (3.6), (3.9) and 
(3.10) by normalising p(a) by po(0), and making the scale change f(1 + K)(Y + a. Then 
the final form of the Bethe ansatz equations for finite soliton density is 

A 

p ( a )  = ( 2 ~ ) - '  cosh(&) + da '  R(a  - ( ~ ' ) p ( a ' ) ,  (3.12) 

P, = R;' d a  p ( a L  (3.13) 

E~ = E,R;' I, d a  cosh(a)p(a), (3.14) 

I-, 
A 

A 

(3.15) 

k(y) = $[1- tanh($.rry)/tanh($~~y)]. (3.16) 

Here E, and R,  are renormalised constants with dimensions of energy and length 
respectively. The implication in (3.12)-(3.16) that these are precisely the renormalised 
soliton rest energy and quantum length related by E,=Ztc/R, must be explicitly 
checked. 

The identification of E, with the soliton rest energy is easily checked by calculating 
the limiting value of the soliton chemical potential ks = deo/dp, as ps+ 0. For small A 
and a, p(a )  - 1/2n, and 

P , - R ; l ( A h ) ,  eo -E,R;' ( N T L  C L S  -E,, (3.17) 

so this is verified. The identification of R,  is tested by the limiting value of the quantum 
flucruation parameter exp(p) discussed in the last section: 

eZq = rrE,R,(p,/l*S)1'2(dps/dl*s)1~2, (3.18) 

which defines the quantum soliton length R,. At high soliton density, when the mass 
term becomes irrelevant, this must go over into the appropriate value for the massless 
Thirring model, which is independent of soliton density, and given by 

(3.19) 

This behaviour will be verified in Q 5 ,  and confirms the identification of R,  in (3.13) and 
(3.14) with the definition of the quantum soliton length R, implicit in (3.18). Incident- 
ally, this identification leads to the result that exp(2p) + 1 in the low soliton density limit 
for all K > 0. This value is in fact always characteristic of a dilute 1D quantum fluid of 
particles without internal degrees of freedom, whether fermions or bosons. 

By following the general discussion in Haldane (1981b), the integral equations for 
the chemical potential p, and quantum fluctuation parameter are easily found by taking 
derivatives of (3.12) with respect to A. Then 

2K/(1 + K )  = p 2 / 4 T  = (1 + g / T ) - ' ,  Ps + 00. 

'\ 

T ( ~ ) = R ( ~ - A ) +  d a ' R ( a - a ' ) ~ ( a ' ) ,  

eq = 1 + j:\ d a  ~ ( a ) ,  

I_* (3.20) 

(3.21) 

(3.22) 



Quantum fluid ground state of the sine-Gordon model 515 

Finally, I note that the integral operator in (3.12) and (3.20) is of a very well behaved 
type, making these equations eminently suitable for numerical solution by systematic 
iteration. It is symmetric and definite (positive for K > 1 and negative for K < l ) ,  and its 
eigenvalues are real and satisfy the inequality 

A 

A, d a  R(a)>  1. (3.23) 

For K >$, / A n /  > 1 and the iterative solution is absolutely convergent. For K >f, for 
sufficiently large A, eigenvalues eventually appear in the range - 1 < A, C 2( 1 - K - ' )  < 
0; this means the direct iterative solution is no longer convergent, but the solution can 
still be obtained numerically by successive iteration from solutions with a nearby value 
of K and A. 

4. Properties of the kernel of the Bethe ansatz integral equation 

In this section, I describe some properties of the kernel function R ( a )  (3.15). The 
kernel is given in terms of its Fourier transform: 

03 

R ( a ) = l l  27T -03 dyd(y)e iUY,  R ( y )  = +[1 - t anh($~y) / t anh($~~y) ] .  (4.1) 

R ( a )  diverges as K + 0, but is otherwise finite. R ( y )  is entire except for poles along the 
imaginary axis at y = (2n + l)i, and at y = 2 m i / ~ ,  m # 0; as K + CO, these latter poles 
coalesce into a branch cut. R ( y )  can also be written in a factorised form suitable for 
solving certain Wiener-Hopf equations generated by the high soliton density limit, 
A+m:  

R ( y )  = 1 -Y(+iy)Y(-+iy), 

The function Y(z) is entire and free from zeros except on the negative real axis. Y(z) -+ 1 
as IzI + m, larg(z)l< 7 ~ .  l/Y(z) has only simple poles at z = -n/(l + K ) ,  n = 1,2, . . . , 
and is otherwise analytic. Y(z) = 1 when K = 1. 

R ( a )  vanishes for K = 1; it is positive definite for K > 1, and negative definite for 
K < 1. For fixed a, R ( a ;  K )  is an increasing function of K .  R(a)/R(O) is even, and 
decreases monotonically from a single stationary point at a = 0; the character of the 
function is somewhat intermediate between a Gaussian and a Lorentzian; it vanishes as 
a+m.  

It does not seem possible to give an explicit analytical expression for R(0) as a 
function of K ;  however, some special limits are: 

R(0)- - h ( 2  ec/7TK)/(7T2K) K + O  

= O  K = l  

(4.3) 
C is Euler's constant. 
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For large a, R (a) eventually decays exponentially for K < 03, but has algebraic 
limiting behaviour when K = 00: as ICY I  + 03, 

~ ( a )  - T-’ tan[$.rr(K - 111 exp(-lal) K<2 

- 2 ~ - ~ 1 a l  exp(-)al) K = 2  

- ( T K  1-l tan(.rr/ K ) exp(-21 a I / K 2 < K < m .  (4.4) 
The change in asymptotic behaviour at K = 2 is responsible for the MTM cut-off problem 
discussed by Bergknoff and Thacker (1979): for K < 2, a simple ‘rapidity’ cut-off can be 
used, but for K > 2, the lattice cut-off of the ‘XYZ’ model must be used. For large K ,  the 
asymptotic behaviour separates into two regions: 

R(a)-(1/4a2)  1 << C l  << K 

- (1 /4a 2)(21a I / K I 2  exP(-2b 1 / K K << Cl‘. (4.5) 
The change from algebraic to exponential behaviour when la I - 4~ defines a crossover 
length scale R *  corresponding to the soliton density when A - K ; this vanishes in the 
limit K + 00. As will be seen, R* - R s ( ~ ) - l ’ *  exp(-iK)). 

In the limit K = 00, R(y) becomes especially simple: 

R (Y 1 = [I+ exp(.lrly 

R ( a )  can be expressed as 

Y(Z) = (2T)-1/2r($+z) ez (4.6) 

(4.7) 

Apart from a scale factor, this coincides with a similar kernel function RG(a)= 
$.rrR($~a) introduced by Griffiths (1964) in connection with the isotropic antifer- 
romagnetic Heisenberg chain. The limit K + 03 of the SG/MTM in fact describes the 
critical behaviour of a 1D quantum fluid at its density-wave instability point, and is a 
very important limit of the model (Haldane 1981d). 

Though R ( a )  diverges as K + 0, various limits exist. In particular, 

Rl(a)  = lim [ - ~ R ( a ) l =  r-2 Inlcoth(!cY)/. (4.9) 

This explicit form for the rescaled kernel R1(a) exhibits the development of a 
logarithmic singularity at CY = 0. A second limit probes the small-a region: 

K + O  

R (CY) - R  ( 0 ) - K P 1 R 2 ( C Y / K ) ,  /CY/<< 1, K + o ,  

2 sin2($xu) 
exp(.rrx) - 1 

Rz(u )  = lim [ - K ( R ( O ) - R ( K U ) ) ] =  T -’ Jom dx 
U+O 

(4.10) 

which can be written as 

R ~ ( u )  = $ T - ~ [ ~ ( I  +iu/.rr) + +(I - iu / r )  -24(1)] 

where $(x) is Euler’s psi function. For large Iul, R2(u)-.rr-2 lnlu eC/.rrl; when 
combined with the limiting behaviour of R(0)  given by (4.3), [ K R ( O ) - R ~ ( ~ / K ) ]  with 
I ~ I / K  large matches onto the small-a form of R1(a) .  
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5. The low and high soliton density limits (K > 0) 

In this section, I examine the properties of the soliton fluid ground state in the limits of 
low and high density, including the crossover in high-density behaviour as K -* 00. The 
behaviour in the classical limit K -* 0 is more complex, and is dealt with in a separate 
section. 

When K is non-zero, the kernel function R (a) is non-singular, and the properties of 
the system in the dilute limit are analytic in A (and hence in lpsRsl). Power series in a 
and A can be developed for the solutions p ( a )  and .(a) of (3.12) and (3.20): 

27rp(a) = 1 +2R(0)+O(h2)+O((r2),  

~ ( a )  = R(0)[1+ 2R(0) + O(A’)]+ O(aA). (5.1) 

Substitution into (3.13), (3.14), (3.20) and (3.21), together with relations (2.13) and 
(2.15), easily leads to the expansions 

E o  = ~ s P s [ l  +~(17PsRs)2-~R(0)(17PsRs)3 + O(PsRs)41, (5.2) 

Ps = EJ1 + %rPsRs)2 - 9 ~ O ) ( ~ ~ S R S ) ~  + O(psRJ41, (5.3) 

(5.4) 

U N  = c(.rrpsRd[f. -8R(O)(.rrp,R,)+O(pSRs)*I, ( 5 . 5 )  

V S  = c(TpsRA1- 4R (O)(WSRJ + O ( ~ s R 3 ~ 1 ,  (5.6) 

U J  = c (rpsRs)[1 -?%VPSRS)~ +!R (O)(l7PsRs)’ + O ( ~ S R S ) ~ I *  (5.7) 

= [I + 2~ (o)(w,R,) + o(P,R,)~I 

The lowest-order coupling-dependent terms are controlled by R (0). This diverges to 
- 00 as K -* 0, and the radius of convergence of the series (5.2)-(5.7) then shrinks to 
zero. In the low-density limit, exp(cp) + 1, as the dimensionless coupling constant of the 
contact force between solitons diverges, while matrix elements for gradient terms in the 
interactions vanish. As the contact coupling diverges, the properties of the system 
approach those of a free spinless Fermi gas, which can always be assumed to have an 
infinite contact coupling, as pointed out in Girardeau’s (1960) study of hard-core 
systems in one space dimension. While the lowest-order corrections to uN and us are 
coupling dependent, those to uJ are not; this is a feature due to the Galilean invariance 
that appears in the low-density limit. 

The properties in the high-density limit as A + 0O involve the Wiener-Hopf problem 

which has the solution 

(5.9) 
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where d ( y )  = 1 -Y($iy)Y( - 3 y )  is the factorisation (4.2). So can be expanded as 

where an(K) are the residues of the simple poles of l/Y(z) at z = - n / ( K  + 1): 

These results can be used to invert the integral equation 
A 

g ( a )  = f ( a ) + I  da 'R(a  -a ' ) f (a ' ) ,  
0 

which becomes 
m 

da) = gda) + da '    SO(^, a ' )  + T ( a  - a')lg(a') ,  

(5.10) 

(5.11) 

(5.12) 

(5.13) 

m 

T ( a )  = dy e-10y F ( y ) ,  
27T -m 

The Bethe ansatz integral equations can be manipulated into the form (5.12) for 

p (a )=e -"+  lo da'R(a-a ' )p(a ' ) ,  (5.15) 

?(a )  = R ( a )  + da '  R(a  - a')?(a') ,  (5.16) 

studying the high-density limit: 
A 

Id 
where & = 2A, and the physical properties are given by 

eW = (1 + joi da ?(a) ) ,  

When &+CO, the solutions of (5.15) and (5.16) are 

00 

?,(a) = d x  e-'""[(Y( -$ix))-'- 11. 21r -a 

These can be expanded as 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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m 
?,(a) = 2 a , ( K )  exp[-2na/(~ + I)]. (5.21) 

(Note that 1/Y( -4) = 0 for K # 1.) For K < 00, these expressions vanish exponentially as 
a + 00. Note also that the change in asymptotic behaviour of R ( a )  as a + 03 that occurs 
at K = 2 is not reflected in the solution p,(a). It was this change that caused the cut-off 
problem in the MTM for K > 2, as discussed by Bergknoff and Thacker. The renor- 
malisation has completely eliminated it. 

The limiting behaviour of the physical quantities as A +  00 is that of the massless 
Thirring model: substitution of pm and 5,  into (5.17) gives 

n = l  

(5.22) 

us+ c, UN + c e-'"O, VJ + c ezQ0. (5.23) 

As noted in 0 3, the correct limiting behaviour of exp(cp) confirms the identification of 
R, with the renormalised quantum soliton length. 

The leading corrections as A + 00 can be obtained by iterating equations of the form 
of (5.13). It is useful to note that for a >0, T ( a )  has an expansion of the form 

T ( a )  = {tln(K) exp[-(an - 1 ) a ] + t 2 ~ ( ~ )  exp(-2na/rc)+tJn(~) exp[-2na/(~ +I)]}. 
(5.24) 

Thus expansions for the physical properties given by (5.17) will involve sums of terms of 
the form exp{ - [nlA+ n 2 ( 2 / ~ ) A +  n 3 ( 2 / ~  + l)A]}. It is useful to introduce the solutions 
of the associated Wiener-Hopf problem: 

m 

n = l  

These occur in the solution of (5.13) by iteration, but will not be explicitly constructed 
here. 

When K < 00, the leading corrections at large but finite soliton density are controlled 
by an exponent E : 

E = 4 / ( ~ + 1 ) = 2 ( 2 - e ' ~ 0 ) ,  (5.26) 

The corrections involve a positive coefficient A(K):  

E c 2  for K > 1, 2 c  E c 4  for K < 1. 

(5.27) 

When K = 1, E = 2 and A(1) = f. The limiting behaviour of the physical quantities is 

E O =  (r~c){~e- '~op.2[1 +2A(~)(2-~)-l(rp,R,)- ' .  . . ] + r  t a n ( f ~ ~ ) ( 2 r ~ , ) - ' } ,  

p, = ( r f i c )  e-zQop,[l +A(K)(T~,R,)-". . .I, 
e' = e'o[1 -&(K)(2 - E ) ( T ~ , R , ) - ~  . . .I, us = C[I-~A(K)E(T;P,R,)-~. . .I, 
UN = c e-290[l + A ( K ) ( ~  - ~ ) ( r p . R , ) ' .  . .I, UJ = c eZVo[1 -A(K)(T~,R,)'. . ,]. 

(5.28) 
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Various features of (5.28) are of note. The corrections to the ground-state energy 
diverge as ps+ CO when K 3 1, and the constant term in eo is merely a non-leading 
correction; however, for K < 1, the corrections converge, and the constant energy 
density (.rrhc)[.rr tan($.rr~)](21~R,)-* represents the lowering of the energy of the zero- 
soliton state associated with the opening of the soliton gap. This energy diverges as 
K + 1-. When K = 1, E = 2, and the free fermion results of the non-interacting MTM are 
recovered; there is no renormalisation of exp(p), which remains equal to 1. When E = 1 
( K  = 3), the corrections to uN change sign; for K C 3, the corrections to the chemical 
potential vanish in the high-density limit, but they diverge when K > 3. The leading 
correction to us vanishes as E + 0 ( K  + CO). 

Finally, I examine the asymptotic high-density behaviour in the regime of algebraic 
decay of the kernel (1 << A << K )  that takes over as K + Co. For K and A >> 1, 

Y tl)pm(a 1 - ?,(a 1 1 <( a, 

. im(a)-2d?(1/4a2){1 +au-'[ln($a)-$]. . .} 1 <( CY <( K 

- 2 J Z ( 1 / 4 a 2 ) [ 2 a / ( ~  + 1)12 exp[-2a/(~ + l)] K << a. (5.29) 

Substitution of these results into (5.17) gives the leading corrections when K = co: 

eo = (whc)ippl{l +t[ln(.rrp,~,)]-' . . .), 
eW = J/2(1 - ~ [ l n ( ~ p , ~ , ) ] - '  . . .I, 
UN = ~ C { I  + t[ln(rp,~,)]- '  . . .I, (5.30) 

The leading correction to us is one order below that of the other terms. The crossover 
between these results and the results (5.28) for large but finite K takes place when A - K ; 
a precise definition of a crossover length scale R * can be obtained by equating the value 
of exp(p) given by (5.30) when rpsR* = 1 to the limiting finite-K value exp(po) = 
[ ~ K / ( K  + 1)]''2, From (5.30), R*-R, exp( - $ K ) ;  to determine the behaviour of R *  
as K + C Y )  more precisely, it is necessary to examine the next order of corrections to 
(5.30). The equation for ?(a)  can be written as 

p, = (rhc)$pS{1 +$[~n(wp,~,)]-' . . .I, 
us = C{I -$[ln(rp,~,)]-* . . .}, 
V J  = 2c{1- $[ln(~p,~,)]- '  . . .I. 

r m  r A 

[?(a) - .iCO(a)] = - J- da '  R(a - a ' ) ~ ~ ( a ' )  + J da '  R ( a  - a')[S(a')  - ?m(a')], 
;z 0 

CO oc 

da '  R(a-a ') . im(af)-  - (JZ /2A2)  1- da'R(a ' ) .  (5.31) 

In the limit A + CO, the derivative of this equation can be related to the equation for 
F m ( a )  itself, leading to the result 

- li .\-e 

Substitution into the expression for exp(p) gives the expansion 

eW = d?{ 1 - -$A-' -$A-2[ln(K) - 2 In(A)] + O ( r 3 ) } ,  (5.33) 

which (when taken with (5.22) which has no corrections to this order) leads to the result 
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The constant A is given by 

The limiting behaviour in the high-density limit obtained in this section can also be 
obtained by the scaling theory or renormalisation group treatment of the MTM mass 
perturbation expansion, apart from the values of numerical constants. 

6. The crossover to the classical limit as K 4 0  (pz+O) 
In this section, I will make contact between the Bethe ansatz solution of the QSG, and 
the ground-state properties of the classical (/?’ = 0) sine-Gordon system 

The N, = 1 (single-soliton) ground state has broken translational symmetry, and in the 
limit L + CO is given by 

e(x) = 4 tan-’{exp[(x -XO)/Rb]}, Eo = E,. (6.2) 
Frank and van der Merwe (FdvM) (1949) obtained the finite soliton density ground state: 
it is a regular evenly spaced lattice of solitons (localised regions where the phase 8(x) 
slips by 27),  with ground-state energy density and soliton density given parametrically 
in terms of the modulus k of complete elliptic functions of the first and second kinds, 
K(k )  and E(k) ,  with complementary modulus k‘= (1 - kZ)1’2 .  

PsRb = 1/(2kK), E O =  E,p,(E -)k”K)/k. (6.3) 

In the high-density limit (k + 0) 

E o  = $7T2E,Rbp: [ I +  &(TpsRb)-4 . . .] + iE,Rbl. 

This should be compared with the limit of (5.28) as K + 0: 

( 6 . 4 ~ )  

E O  = $.rr’E,(R,/trK)p~[l + O(P,R, ) -~ .  . .]+QE,(R,/m)-‘. (6.46) 

The comparison shows that as K + 0, the classical soliton width Rb of (6.1) is related to 
the quantum soliton width by R, - m R b :  the classical soliton width is thus precisely 
given by the principal quantum breather length Rb = R,/[2 sin(&r~)] as K + 0. An 
interpretation of this is that as K + 0, the vacuum becomes ‘softer’ against virtual 
breather fluctuations, and the ‘bare’ soliton becomes ‘dressed’ by a cloud of virtual 
breathers, so that its effective size in the classical limit is controlled by the breather 
length scale. 

The long-range order of the periodic soliton lattice corresponds to ‘2kF’ periodicity 
of the density correlations, with vanishing quantum fluctuation parameter exp(cp). 
Equation (2.14) shows that exp(2cp) a E,R, = m E s R b  vanishes linearly with K as the 
limit K + 0 is taken at finite soliton density. 

In the dilute classical soliton limit, p R b c  1 (k’+ 0), the FvdM solution behaves as 

EO = ESP,[ 1 f 4 expL-1 /(psRb)l+ O{exp[-l /(psRb)l}’~. (6.5) 
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In this limit, the solitons are almost free, except for an exponentially weak repulsive 
effective interaction 4Es exp(-lrl/Rb) between solitons, which has the same fall-off as 
the strain field associated with the single-soliton solution (6.2): V e ( x )  = 

As noted in 0 4, the kernel R ( a )  of the Bethe ansatz equation (3.12) diverges as 
K + 0, but the function Rl(a) = - K R ( ~ )  (4.8) has the limit .rr-’ lnlcoth($cu)I. When the 
pseudomomenta density function p ( a )  is renormalised by a factor ( T K ) ~ ’ ,  equations 
(3.12)-(3.14) have the following limit as K + O :  

2Rb’ sech[(x - X*)/Rb]. 

d a ’  ln(coth[$(a -a ‘ ) ] (p l (a ’ )  

.& 

pS = ~ b l  I-,, d a  p l ( a ) ,  

d a  cosh(a) p l ( a ) .  

The derivative of the integral equation (6.6) gives 

da’  [sinh(a -a ’ ) ] - ’p l (a ) .  

(6.7) 

(6.8) 

This singular integral equation is put into Cauchy form by the change of variable 
t = tanh(a); it is then easily solved to give 

2vpl(a) = sech(h)[tanh2W -tanh2(~)]-”2[C(A) sech(a) +cosh(a)]. (6.10) 

C(A) is an undetermined constant that must be found by substitution back into the 
original equation (6.6). 

Unfortunately, I was not able to find C(A) explicitly for general A, nor carry out the 
integrals (6.7), (6.8) that should lead to the FvdM result (6.3), despite the obvious 
connection of integrals of p1(a) with elliptic integrals. However, for small A, evaluation 
of C ( h )  is straightforward as the hyperbolic functions can be linearised, with the result 

2.rrp1(a)-[ln(4/A)]-’(Az-a2)-1’2+0(A) A<< 1. (6.11) 

Substitution of (6.11) into (6.7) and (6.8) leads to the low-density FvdM result (6 .9 ,  with 
A-  k’ as A-0 .  

It is now of interest to see how the QSG results behave for both ps and K small but 
finite: there is an obvious discrepancy between the two limits of the quantum fluctuation 
parameter exp(cp) + 0 for K + 0, ps finite, and exp(cp) + 1 for p s +  0, K finite. For small a 
and K ,  R ( a )  has the form (4.10): 

R ( ~ ) - R ( O ) - K  R z ( ~ / K ) ,  R(0) = -ln(2eC/7fK)/(.rr2K), -1 

R 2 ( U )  - 77-25(3)(u/.rr)2 u+o ,  R2(u) - .rr-’ lnlecu/.rrl U + o O  

(6.12) 

(5(3) = 1.20205 . . . is the Riemann zeta function). For la I << K ,  R(a)  - R(O), constant, 
while for Icul>> K ,  the K = 0 form - ln \&r[ / (dK)  is recovered. For 1 >>A >> K ,  to a first 
approximation, the FvdM result (6.5) can be inserted into (2.14) to give the limiting 
behaviour of exp(cp) as K + 0: 

e’ - X(h)1’2(PsRb) exp(1/4ps~b), K << A - 4  eXp(-1/2psRb)<< 1. (6.13) 
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This result reflects the physics of small-amplitude, zero-point fluctuations of the 
solitons in the weak potential well due to the exponential force between neighbouring 
solitons. As the soliton density decreases, this potential well becomes weaker, and 
exp(cp), which is essentially the ratio of the amplitude of zero-point fluctuations to the 
mean soliton separation, increases. When the semiclassical result fails, exp(cp) - 
(psRb)- l/ln(l/K)<< 1; the soliton is moving in an effective potential of form - cosh(r/Rb), and this can be seen to be precisely the condition that the harmonic 
approximation for zero-point motion fails. 

In the other limit A<< K,  the Bethe ansatz equations with constant kernel R ( a )  - 
R (0) are easily solved, leading to the result 

elp - (1 + 27rR (O)p,R,), A -  wSRs/(1 +27rR(0)psRs). (6.14) 

Since R(0) is negative, exp(cp) given by (6.14) apparently vanishes at a critical density 
given by p,R = 1, where 

R = 2~~ 1n(2eC/7r~). (6.15) 

Actually, this is spurious, since the condition A <  K means that (6.14) is only valid when 
exp(cp) > 7r’psRb, which is the same crossover condition as that obtained from the 
opposite FvdM limit. As K + 0 the crossover region between (6.13) and (6.14) becomes 
sharper and sharper, and R defined by (6.15) is a well defined characteristic length. The 
crossover region is given by 

(6.16) 

As K + 0, a universal crossover function between these two regions can be defined: for 
lpsR - 11 << 1, as K -+ 0, 

lpsR - 11 d 7r2&/R =$7r2/1n(2 eC/7rK). 

elp = (Rb/R)F[(R/Rb)(l - p s R ) ] ,  

F ( x )  - x x >> 1; F ( x )  - (eC/7r)”’ exp(&) ( x  << -1). 6.17 

The breakdown of the solution (6.14) can be studied by including the limiting quadratic 
behaviour of Rz in the kernel R(a).  The solution to lowest order in this correction is 
easily developed: 

(6.18) elp = (1 -p,R)[l+ (2.rrz5(3)/3)(R/Rb)-”(1 - - P , R ) - ~ .  . .]. 
This implies the asymptotic behaviour 

F ( x )  - X  + (27r25(3)/3)/x’ . . . asx+co. (6.19) 

7. Discussion 

This paper has presented the renormalised Bethe ansatz equations describing the 
quantum fluid ground state of the sine-Gordon/massive Thirring model, obtained from 
the unrenormalised equations derived by Bergknoff and Thacker (1979). The ‘quantum 
fluctuation parameter’ exp(cp> that controls the quantum fluid correlation functions was 
extracted from the Bethe ansatz equations, and used to characterise the basic low- 
energy physics which is described in terms of a recent theory of 1D quantum fluids (or 
‘Luttinger liquids’, Haldane (1980, 1981a)). 

The properties of the soliton in both high- and low-density limits were explicitly 
given, as well as in the semiclassical (p2+0)  and critical (p2-+87r) limits of the SG 
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coupling parameter; various crossovers were described in detail. A number of length 
scales appear in the problem. The fundamental length is the quantum soliton length 
R, = h/m,c, where m, is the soliton mass. In the limit p2 -* 0, the quantum breather 
length Rb = A/mbc >> R. becomes the characteristic length of the theory: it is this length 
that characterises the width of the classical soliton. A second length l? >> Rb controls the 
crossover between the dilute quantum fluid behaviour and the semiclassical region of 
small zero-point fluctuations about the classical soliton lattice state described by Frank 
and van der Merwe (1949). Similarly, a length R*<< R ,  controls critical behaviour in 
the high-density limit as p2 -* 8 ~ .  

In the region pz  < 47r, the ground-state energy shift associated with the opening of 
the soliton gap is finite: this energy density was obtained, and is given by 
iE,R;' tan(&" where K = (p2/8w)/(t --p2/87r), and E, is the soliton rest energy. 

Expansions for the various ground-state and low-energy excitation spectrum pro- 
perties were given in the various limits. If curves describing their behaviour in 
intermediate regions are required, they can be obtained from the integral equations 
presented here, which are easily solved numerically by iteration. 

A number of applications of the SG results can be suggested. The limiting critical 
behaviour as p2+ 87r is closely connected with critical behaviour at the density-wave 
instability of 1D quantum fluids (Haldane 1981d), such as seen close to the isotropic 
point of 1D antiferromagnets (Haldane 1980). As stressed recently by Black and 
Emery (1981), this behaviour is directly related to critical behaviour associated with the 
Kosterlitz-Thouless transition in various 2D classical models, such as the XY model 
and Potts model variants. A direct translation of the results presented here into 2D 
classical language can be made, with the quantum fluctuation parameter now becoming 
the parameter controlling the power-law correlations of the classical model. From the 
integral equations presented here, the full crossover functions are exactly calculable. 

A second application to 2D classical problems involves the crossover behaviour as 
p2+ 0. Here the QSG becomes relevant to critical behaviour at the commensurate- 
incommensurate transition of 2D adsorbed monolayers that become incommensurate 
in one direction, with domain walls playing an analogous role to 1D solitons (see e.g. 
Schulz (1980)). A detailed report including the translation of the results of 0 6 into the 
language of this problem has already been prepared (Haldane and Villain 1981). 
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